ELTN 115

UNIT 13 Capacitors

T. Thoen Pasadena City College School of Engineering & Technology

Capacitors – what are they?

 Capacitors are passive devices – they cannot provide "gain" in a circuit.

Capacitors have 2 leads or wires

 Capacitors are either "non polarized" or "polarized" Polarized mean they have +/terminals.

Capacitors – applications

 Capacitors can store energy for short periods of time.

Capacitors can filter AC or "noisy" signals
Capacitors can be used for timing circuits.

Capacitors come in a variety of packages:

Electrolytic Polyester (polarized)

(Non-polarized)

Surface Mount

Note – SMT Capacitors typically do NOT have numbers / values, except for polarized types (positive and negative leads)

Capacitors - Internal construction

What is a capacitor made of?

- Layers of conductors and Insulators
- Insulators are called *dielectric*
- The dielectric affects the sensitivity to temperature and other effects. There are LOTS of different types of dielectrics, often plastics are used.

Capacitor values

Some small capacitor values are listed with numbers, not a color code: In this example, the number 104 is equal to 1 x 10⁴ picofarads, which translates to 0.1µF.

 Larger Electrolytic (polarized) capacitors have value printed on the case - This example shows 120µF, 400V Power storage: Capacitors can charge up to a value equal to the source voltage and store the charge for a period of time.

Polarized Capacitor

Physical construction

Schematic Symbol

When a voltage is applied across a capacitor it charges exponentially:

The rate that a capacitor charges is called tau (τ) , and equals the product of the capacitor value and resistor value:

 $\tau = \mathbf{R} \times \mathbf{C}$

The units of tau are seconds.

- **For** many circuits tau has a value in milliseconds.
- A capacitor charges to the source voltage in approximately 5 time constants, or 5τ. For example:

 $\tau = R \times C$

If $R = 1K\Omega$ and $C = 50\mu$ F, $R \times C = (1K\Omega) \times (50 \times 10^{-6} \mu$ F) = 50 millisecond So, in 250 milliseconds (1/4 second), the capacitor is fully charged.

Filtering application

- Because capacitors take time to charge, they "resist" changes in voltage.
- If a "noisy" signal is applied across a capacitor, it doesn't have time to charge to the maximum value, so it "flattens" the output voltage:

