Series Circuits

ELTN 130 Tom Thoen – Teacher / Student / Hobbyist / Inventor

Resistors – how they work when connected together...

Resistors can be connected together in two basic ways: *Series* and *Parallel*.

In *Series circuits* <u>each of the resistors</u> are connected <u>end to end</u>.

Formulas for Series and Parallel resistors:

 R_T = "Total Resistance" = R1 + R2 + R3... for however many resistors there are in the circuit.

To solve series circuits with more than one resistor, we start by finding the total Resistance R_T (Total Resistance).

Adding resistances in series Each resistance in a series circuit adds to the Riota total resistance of the circuit. **Circuit diagram** $R_{total} = R_1 + R_2 + R_3...$ Total resistance Individual resistances (Ω)

(ohms)

In this example, $R_T = 3K\Omega +$ $10K \Omega + 5K \Omega = 18K \Omega$

Start by adding all of the resistor values together. This equals R_T

Next, we use Ohm's Law to calculate total current. This current is called Is, or the *Source current*:

1. $R_T = 18K\Omega$ 2. $I_S = V/R_T$ (Ohm's Law) 3. $I_S = 18V / 18K\Omega$ 4. Is = 0.001A or 1mA

What's left? We still need to calculate the voltage across each resistor – how do we do that? Let's use Ohm's Law again...

1. $V_{R1} = I_S \times R1$ 2. $V_{R1} = 0.001A \times 3000 \Omega$ 3. $V_{R1} = 3V$

Next we calculate V_{R2} :

1. $V_{R2} = I_S \times R2$ 2. $V_{R1} = 0.001 A \times 10 K \Omega$ 3. $V_{R1} = 10 V$

Finally we calculate V_{R3} :

1. $V_{R3} = I_S \times R3$ 2. $V_{R1} = 0.001 A \times 5K \Omega$ 3. $V_{R1} = 5V$

Do the voltages add up?

Since this matches the source voltage, we have validated that the input voltage equals the sum of the voltages across all of the resistors