Voltage, Current and Resistance

(ELTN 130
Tom Thoen
- Engineer / Teacher / Student / Hobbyist

Three concepts are critical in understanding applied electronics:

Voltage
Current
Resistance

Basic Definitions: Voltage

An electromotive force or potential difference expressed in volts.

1. Units are Volts (V)
2. Electromotive force is abbreviated EMF.
3. In electronics it is considered the "cause" of electric effects.
4. Base formula: 1 Volt = 1 Joule / Coulomb* (energy to move charge)
5. Similar to "potential energy" it can store energy to be used at a later time.
6. Voltage is the difference in electrical potential between two points therefore it is always measured between two points

* 1 Coulomb = a LARGE quantity of electrons: 6.24×10^{18}

Basic Definitions: Current

The rate of flow of electric charge, having a magnitude equal to the quantity of charge passing a fixed point in a fixed period of time.

1. Units are Amps (A). Symbol is "I"
2. In electronics it is considered the "result" of an electrical "pressure."
3. Base formula:

1 Amp = 1 Coulomb / Second
4. In order for current to flow, there must be a complete path or "circuit" for it to move through.

5. Since current is a flow it is measured "through" a point in a circuit.

Basic Definitions: Resistance

Resistance is an electrical quantity that measures how the device or material reduces the electric current flow through it.

1. Resistance is measured in units of ohms (Ω).
2. In electronics it is considered the "opposition" of electric effects.
3. Base formula: $\mathrm{R}=\mathrm{V} / \mathrm{I}$

How are the three concepts related???

Current is the flow of electron charge pushed by a Voltage source through a conductor*, but is limited in speed by the Resistance of the circuit.

* Usually a wire, or copper trace on a circuit board

A scientist named George Ohm discovered this relationship; it later became known as Ohm's Law. This law can be quantified with a formula:

- Voltage $=$ Current \times Resistance
- Or, V = I x R
- Where does the "I" come from?

George Ohm, circa early 1800's
Voltage Current Resistance
Units: Volts (V) Amps (A) Ohms (Ω)(of measurement)
Designator: I R

What's the difference between designators and units?

Resistor \#1 in a circuit is called R1 The value of R1 is 1000Ω

Resistor schematic symbols
Resistor \#2 in a circuit is called R2
The value of R2 is $47,000 \Omega$

References

\& blog.vixra.org
\& www.quora.com
\& https://www.google.com/search?newwindow=1\&biw=1344\&bih=681\&tbm=isch\&sa=1\&q=resistor+in ternal\&oq=resistor+internal\&gs_l=img.3..0i30j0i8i3013.95444.96995.0.97742.10.9.0.0.0.0.410.836.2j2j41.5.0...0...1c.1.64.img.5.5.826...0j0i24.J2wv7W4cOnc\#imgrc=Ez_J8ap5APRxQM\%3A
\& https://www.google.com/search?newwindow=1\&biw=1344\&bih=681\&tbm=isch\&sa=1\&q=resistor+in ternal\&oq=resistor+internal\&gs_l=img.3..0i30j0i8i3013.95444.96995.0.97742.10.9.0.0.0.0.410.836.2j2j41.5.0....0...1c.1.64.img..5.5.826...0j0i24.J2wv7W4cOnc\#imgrc=_i4fNbqDLhx0hM\%3A
\& https://www.google.com/search?newwindow=1\&biw=1344\&-bih=681\&tbm=isch\&sa=1\&q=resistors\& oq=resistors\&gs l-img.3..0110.2182.3546.0.3695.9.8.0.0.0.0.259.951.0j3j2.5.0....0...1c.1.64.img..4.5.943.G a39OIsOfE\#imgrc=fUfeZr1sp6047M\%3A
\& http://www.google.com/url?sa=i\&rct-i\&q=\&esrc=s\&source-images\&cd=\&cad=rja\&uact=8\&ved=0ah UKEwiNyliV7t MAhWIpR4KHaR0CUMOjB0IBg\&url=http\%3A\%2F\%2Fwww.thomasnet.com\%2Fa rticles\%2Fautomation-electronics\%2Ftesting-pcb-components\&psig=AFQjCNGpT7mFB
\& 8x8GHVyj9xRn4n5txAgwQ\&ust=1463531044664192https://www.google.com/search?newwindow=1 \&biw=1344\&bih=681\&tbm=isch\&sa=1\&q=resistor+color+code\&oq=resistor+color+code\&gs_l=img.3.. 0l10.2678235.2682114.0.2682309.19.18.0.0.0.0.325.2675.0j6j4j2.12.0....0...1c.1.64.img.7.12.2658.BntmGg xoj4M\#imgrc=_
\& www.canstockphoto.com

