
Introduction to Arduino Programs :

Sketches

 Understand the basic structure of an Arduino sketch

 Identify each part of the structure

 Understand the importance and significance of well documented
code using comments

 Understand variable types and how to use them

 Understand the importance of “grammar and punctuation” in a C
program

 Understand how digital outputs are implemented

 Write and download your first program

 A “Sketch” is a single program that runs on an
Arduino device.

 There are four basic parts of a sketch:

1. Header – definition of what the program does, who
wrote it, and the date.

2. Variable definitions

3. setup function – defines how I/O pins will be used

4. loop function – main code that runs indefinitely

 The header is a group of comments that
provides important information about the
program including:

 Title of program

 Purpose of program

 Author of program

 Date program was created

 Revisions

 Other files the program uses

 I/O connections

/*

Name of program: Blink#2

Purpose of program: Flashes LED on
board using a constant and variable.

Created by: Tom Thoen

Date: 1/20/2017

*/

This is the MINIMUM information required for

any program you are writing in class!!

/* (This is the beginning of the comment block)

Name of program: Blink#2

Purpose of program: Flashes on board LED
using a constant and variable.

Created by: Tom Thoen

Date: 1/20/2017

*/ (This is the end of the comment block)

Note – the comments do not “do” anything in the program – they are there
just to make the code more readable and document what’s going on.

blinkNum = 20; // Number of LED flashes when “stop” pressed

 Usually used on the same line as the code

Not very exciting or fun – but INCREDIBLY important! Helps the reader (and you)
understand what the code means!

And no, you don’t have to comment every line of code – but it helps to keep
track of what the code does.

 A variable is simply a small amount of memory
used to store a numeric value or character
while the program is running.

 It can be a single bit, a signed value, a byte, or a
floating point value.

 Before using a variable, we need to define it’s
name and type.

Type: Value range Bytes Used

boolean 1 or 0 (“true” or “false”) 1

char -128 to +128 1

byte 0 to 255 (no negative values) 1

int -32,768 to 32,767 2

long +/- 2,147,483,647 4

float +/- 3.xxxxxxx E38 4

 most often used

boolean flashMode = 0; declare variable and initialize to zero

 (type) (name) (value)

int longDelay = 2000; declare variable and initialize to 2000

byte redLED = 13; Create a variable name (for an LED on pin 13)

int delayTime = 500; Create a variable for the flash time *

 * Note – what would happen if we used byte instead of int?

Although it is not necessary to initialize a variable to a value, it’s generally a good
idea as it is not guaranteed to be equal to zero at the beginning!

The setup function initializes the Input and Output pins,
and serial (communication) functions.

The setup function only runs one time at the beginning of
the program.

So, what is a function anyway? We’ll be discussing these
in a lot of detail; for now think of them as little sub-
programs.

Int ledPin = 13; // define ledPin = 13

void setup()

{

 pinMode (ledPin, OUTPUT); // initialize digital pin 13 as an output.

}

 Some important notes:
 void means that the function doesn’t return a value – we’ll talk about this more

later

 The () following the function name setup shows that it is a function.

 The curly braces {} define the beginning and end of the function

 pinMode is a pre-defined command in the Arduino programming language. It
is used to define whether a pin on the I/O header is used for input or output.

The loop function is the main part of the program that
runs continuously once setup has completed.

void loop()

{

 // The main program goes here…

 // and loops forever until you reset or
// turn off the power…

}

In order to turn a digital output on or off, we need
to do two things:

1. Define which pin we will turn on or off

2. Set it to a high voltage (5 Volts) or a low voltage (0 volts)

 digitalWrite(13, HIGH);

Pin number
(this is the LED on the board)

Output voltage
(HIGH = 5V, LOW = 0V)

Pin number 13 is also connected
to the LED on the board

Usually outputs 2 – 13 are used on the UNO

Instead of using a number it is better to name the pin as a
constant* at the beginning of the program as follows:

const int redLED = 4; // Red LED on pin 4

const int greenLED = 5; // Green LED on pin 5

In the program, we can now use the names instead of the
pin numbers:

digitalWrite(redLED, HIGH); // Turn on red LED

digitalWrite(redLED, LOW); // Turn off Green LED

* A constant is a special type of variable that can’t change in the program

A very simple function used in programs is the delay function.

• delay essentially stops the program for a fixed time
• delay is an example of built-in functions in the Arduino library

 delay(1000); // delay for one second

Note the parentheses following the function name

The value 1000 is called an argument, and it is passed to the
function.

The units of the delay value are milliseconds.

 /*
Name: Blink227
Purpose of program: Flashes an LED at a rate of 1 Hz, repeatedly.
Author: Jose Programmer
Date: 2/27/2017
*/

const int LED = 13;

void setup()
{
 pinMode(LED, OUTPUT); // initialize digital pin 13 as an output.
}

void loop() // the loop function runs over and over again forever
{
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

[yawn] – not that exciting, but it has all four of the elements described…can you spot them all??

 The “C” programming language is a structured
language, but has some rules:

 White spaces are ignored

 Variable definitions and functions are followed by a
semicolon ; Think of it as the period at the end of a sentence.

 Functions are followed by parenthesis () – if nothing is
passed to the function the “insides” are empty

 The “body” of a function is surrounded by curly braces { }

 For readability, the body of a function is indented

 The output current of the Arduino pins is fairly
low – 20 milliAmps (mA) is a safe value to use.

 However, the Maximum current for groups of
outputs is:

 Sourcing: 300mA

 Sinking: 400mA

 If we are just using LED’s and limit the current
to 10mA there shouldn’t be a problem.

 However, watch for shorting outputs!

VERY simplified view…

Typical resistor values are 330 – 470 Ohms

Each output requires a resistor if multiple LED’s are on at the
same time

 Use a transistor

 If less than 100mA, use a 2N3904 or similar:

Note: Ground MUST be also connected
to the Arduino GND pin!!!

 If higher current is required, use a larger transistor

 (TIP 120 for example)

 Program 1 – Flash a single LED wired to the board (use pin 3)

 Program 2 – Wire two LED’s (Green and Red) to pins 3 and 4.
Flash fast (200 m.s.) 3 times, turn off for 1 second, flash fast,
repeat.

 Program 3 - Wire three LEDs (Green, Yellow, Red) to pins 3,4,
and 5. Sequence the LED’s like a traffic light:

 Red = 10 seconds, Yellow = 3 seconds, Green = 20 seconds

