

Standard Arduino program format: Compiled by Tom Thoen, PCC

Header - comments

Declare variables:

int x = 0;

int count = 0; Arduino programs (sketches) are composed of 3 main parts:

void setup() Variables - values or characters that change in the program

{ Loops / Branches – decisions based on comparing conditions

 // Initialize I/O here or variable values

 // Include libraries Functions* - built-in or user defined subroutines

}

 These all work with hardware I/O (inputs and outputs) that

void loop() interface to the real world to make an embedded system

{

 // This is your main program! * There are many functions built into the Arduino library

}

Variables: Examples:

int : covers large range of +/- values (+/ -32,767) int loopCount;

boolean : either a zero or a one boolean test;

float: large values, typically fractional float bigValue;

Structures:

if condition (branch): tests for a condition and will run code if condition is true; if not skips code:

if (x > 5)

{

 // Do this code

}

// Otherwise continue down here

* Can also use an else condition

while loop: tests for condition and will run code until condition changes:

while (x == 1) // note the double = sign is used to test a condition, not assign a value!

{

 // Do this code as long as x = 1 : Note: does not change the value of x!

}

For loop: Advantages: resets to starting value, can use variables to modify starting and ending points.

for (initial condition; test; action)

{

 Do this code

}

Example:

void loop()

{

 for (int i = 0; i < 15; i++) // Notice that the variable is declared inside the structure!!

 {

 digitalWrite (LedPin, HIGH);

 delay(2000);

 digitalWrite (LedPin, LOW);

 delay(2000);

 }

}

Functions:

Functions are subroutines that are used repeatedly. They are the key to creating well-structured programs.

Types Examples

built-in: delay(500); millis(); and lots of others we haven’t talked about yet!!

User defined: user created, can be re-used in your own programs

Functions have different ways of using data:

Void: void setup(); // nothing passed, nothing returned

Passed values: delay(1000); // The value 1000 is passed to the function

Returned values: x = count(); // the result x is returned

Passed and returned: x = square(value); // value is passed, x is returned

The function above is written like this:

 int square(int number) // the function is int since it returns a value. It is passed number

{

 int x = number * number; // set x to equal number x number (* = multiplication in C)

 return x; // return the value to the main program

}

Serial Communication:

if (Serial.available() > 0) // Check to see if a character is available from the keyboard;

Serial.print (“Hello People!”); // Print a character or variable without carriage return:

Serial.println(“Hello again”); // Print a character or variable with carriage return:

ch = Serial.read(); // Get a character from the serial monitor

x = Serial.parseInt(); // Get a number (int) from the serial monitor

Digital I/O:

void setup() // Configure inputs and outputs in setup:

{

 pinMode (3, OUTPUT); // Use pin 3 as digital output

 pinMode (12, INPUT); // Use pin 12 as digital input

}

digitalWrite(4, HIGH); // turns pin 4 on. Or, use a variable instead of 4

value = digitalRead (inputPin); // Read an input on pin inputPin

while (value == 1) // Do something while input value = 1

Pullup configuration: For inputs configure the internal pullup resistor (switch to ground):

void setup()
{
 pinMode (5, INPUT); // Setup pin 5 as input
 digitalWrite (5, HIGH); // Configure with an internal pullup to 5V
}

You can also write data to pins 0 – 7 as a byte using PORTD command:

a = 75;
PORTD = a; // Write 75 in decimal to pins 0 - 7

ANALOG I/O - INPUTS:

Inputs: Note 1: Input value is scaled from 0 – 1023 for a 0 – 5V input:

Use Analog pins A0 – A5 for input Note 2: Nothing is required in Setup!

int sensorVal = 0;

const int analogInPin = A2; // Analog input pin that the voltage signal

void loop()

{

 sensorVal = analogRead(analogInPin); // Read the voltage from Pin A2 and store in sensorVal

ANALOG I/O - OUTPUTS:

Outputs: Note 1: Output value is scaled from 0 – 255 for a 0 – 5V output:

Use Digital pins with ~ symbol Note 2: Nothing is required in Setup!

int outputVal = 0;

const int analogOutPin = 10; // Define what output pin used for an analog voltage output

void loop()

{

 analogWrite(analogOutPin, outputVal); // Write the value of outputVal to pin 10

}

SCALING OF VARIABLES

y = map(x, minimum value of x, max value of x, min value of y, max value of y);

scales x to y

This allows the programmer to scale different variable sizes to fit into other sizes.

Example: You have an input sensor that reads from 0 to 1023, but you want the output to be scaled from 0 to

10 to turn on 10 led’s over the full sensor range.

output = map (sensor, 0, 1023, 0, 10);

Switch / Case: A very powerful control structure - allows running different code based on a variable value

switch (x) // x is the variable that will effect what happens

{

 case 1:

 // Do this code if x = 1. This can also be a function call!

 break; // jump out of structure if this happens

 case 2:

 // Do this code if x = 2.

 break;

 default:

 // do this if x doesn't equal any of the previous variables. Note, this is optional but good to include

}

