
Arduino Programming :

Arrays

 Understand what an array is

 Understand how data can be stored in arrays

 Understand the practical uses of arrays

An array is a series of objects of the same size and type.

 An object is usually a variable
 Size refers to number of bits used: boolean, int, float, etc.
 Type usually refers to numeric or character (numbers vs. letters)

Variables typically hold a single value (although the value can change):
 example: val = 32; // val equal to 32
 val++; // val now equals 33

An array also has a variable name, but has two brackets following it:

int val[x] the letter x refers to the index of the array

Arrays can hold multiple elements or values.

The index defines a specific element in the array:

 val[0] = 3;

 val[1] = 46;

 Val[2] = 17

Arrays can be initialized with preset values:

int val[] = {3, 46, 17};

 val[0] = 3; // The first indexed value equals 3

 val[1] = 46; // The second indexed value equals 46

 val[2] = 17 // The third indexed value equals 17

Arrays can also be defined with a maximum “size”
before setup() :

int val [50]; // allocate 50 values (0 – 49)

This is really setting aside 50 memory locations to store
all of the possible indexed values of variable val.

How does this work??

Let’s say we want to store three analog values from a single
potentiometer at different times.

We could store them as:

analog1 = analogRead(potVal); // Read the voltage

analog2 = analogRead(potVal); // Read the voltage

analog3 = analogRead(potVal); // Read the voltage

However, a more efficient way is to create an array.

int x;
int analog[3];
potPin = 0; // Potentiometer connected to analog input 0

for (x = 0; x < 3; x++)
{
 analog[x] = analogRead(potPin);
 delay(1000); // read 3 values spaced
} // one second apart

This becomes more efficient when we work with lots of
values.

What if we wanted to print these values now?

for (x = 0; x < 3; x++)

{

 Serial.println (analog[x]);

 delay(200);

}

This becomes more efficient when we work with lots of
values.

	Slide 1
	Slide 2: Objectives
	Slide 3: Arrays
	Slide 4: Arrays – using an index
	Slide 5: Arrays: initializing the variable
	Slide 6: Arrays initializing the variable
	Slide 7: Using Arrays
	Slide 8: Arrays
	Slide 9: Arrays – another example

