
Arduino Programming :

Serial Communication

 Understand how to send and receive data
between the Arduino and computer

 Understand how to format characters to
numbers

Communication to the Arduino Uses the Rx and Tx pins

 Rx = Receive, Tx = Transmit

 The Arduino uses a UART to transfer data

 (Universal Asynchronous Receiver / Transmitter)

The speed that data is transmitted is often called the
‘baud rate’ and is in units of bits per second

 Some common “slow” baud rates:

 9600 19.2KB 38.4KB

Pretty easy to do!

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 Serial.print("Hello");

 delay(1000);

}

Initialize the serial communication at
9600 baud in setup()

Serial.print sends a “string” (set
of characters) to the Arduino to
the computer screen

 By changing the Serial.print() command to
Serial.println() a carriage return is inserted:

 HelloHelloHelloHello // using Serial.print

 Hello // Using Serial.println

 Hello

 Hello

int count;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 for (count = 0; count < 10; count++)
 {
 Serial.print("Value:");
 Serial.print("\t");
 Serial.println(count);
 delay(500);
 }
}

• We can send data to the screen which can be used
as a simple interface.

• We can also use it to “debug” (analyze) variables
in our program.

• For example, if we are trying to read an analog
input we can send that value to the screen to see
the values.

• We can also send characters (letters, numbers,
symbols) to the Arduino from the computer
keyboard.

• This is done using the Serial.read() function.
• The data is received when the Enter button is

pressed on the keyboard.

• However, since the Arduino doesn’t know when
data is coming, we need to setup a loop using a
function called Serial.available()

• This allows us to wait until data has been
received.

if (Serial.available() > 0) // Wait for input...

 {

 charIn = Serial.read(); // Read a character

 if (charIn == ‘F’)

 digitalWrite (LED, OFF);

}

• One issue is that the Arduino only receives text
characters from the computer. Often we want to
read a numerical value.

• To do this, we need to convert between characters
and numbers.

• This is done using the Serial.parseInt() function.

• Let’s put this all together…

int value;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 if (Serial.available() > 0) // wait for input from the keyboard
 {
 value = Serial.parseInt(); // Convert text to a numerical value
 Serial.print(“First Value: ");
 Serial.print("\t");
 Serial.println(value);
 Serial.print("Doubled Value: ");
 Serial.print("\t");
 Serial.println(value * 2);
 }
}

	Slide 1
	Slide 2: Objectives
	Slide 3: Serial communication
	Slide 4: Data is sent at a specific rate
	Slide 5: Sending data from the Arduino to the computer screen:
	Slide 6: To see what’s on the screen click on the serial monitor button
	Slide 7: Formatting a new line:
	Slide 8: Tabs are a great way to separate text from data
	Slide 9: Uses of Serial.print()
	Slide 10: Sending Characters to the Arduino
	Slide 11: Simple receive character code
	Slide 12: Sending Data to the Arduino
	Slide 13

