
Arduino Programming :

Serial Communication

 Understand how to send and receive data
between the Arduino and computer

 Understand how to format characters to
numbers

Communication to the Arduino Uses the Rx and Tx pins

 Rx = Receive, Tx = Transmit

 The Arduino uses a UART to transfer data

 (Universal Asynchronous Receiver / Transmitter)

The speed that data is transmitted is often called the
‘baud rate’ and is in units of bits per second

 Some common “slow” baud rates:

 9600 19.2KB 38.4KB

Pretty easy to do!

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 Serial.print("Hello");

 delay(1000);

}

Initialize the serial communication at
9600 baud in setup()

Serial.print sends a “string” (set
of characters) to the Arduino to
the computer screen

 By changing the Serial.print() command to
Serial.println() a carriage return is inserted:

 HelloHelloHelloHello // using Serial.print

 Hello // Using Serial.println

 Hello

 Hello

int count;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 for (count = 0; count < 10; count++)
 {
 Serial.print("Value:");
 Serial.print("\t");
 Serial.println(count);
 delay(500);
 }
}

• We can send data to the screen which can be used
as a simple interface.

• We can also use it to “debug” (analyze) variables
in our program.

• For example, if we are trying to read an analog
input we can send that value to the screen to see
the values.

• We can also send characters (letters, numbers,
symbols) to the Arduino from the computer
keyboard.

• This is done using the Serial.read() function.
• The data is received when the Enter button is

pressed on the keyboard.

• However, since the Arduino doesn’t know when
data is coming, we need to setup a loop using a
function called Serial.available()

• This allows us to wait until data has been
received.

if (Serial.available() > 0) // Wait for input...

 {

 charIn = Serial.read(); // Read a character

 if (charIn == ‘F’)

 digitalWrite (LED, OFF);

}

• One issue is that the Arduino only receives text
characters from the computer. Often we want to
read a numerical value.

• To do this, we need to convert between characters
and numbers.

• This is done using the Serial.parseInt() function.

• Let’s put this all together…

int value;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 if (Serial.available() > 0) // wait for input from the keyboard
 {
 value = Serial.parseInt(); // Convert text to a numerical value
 Serial.print(“First Value: ");
 Serial.print("\t");
 Serial.println(value);
 Serial.print("Doubled Value: ");
 Serial.print("\t");
 Serial.println(value * 2);
 }
}

	Slide 1
	Slide 2: Objectives
	Slide 3: Serial communication
	Slide 4: Data is sent at a specific rate
	Slide 5: Sending data from the Arduino to the computer screen:
	Slide 6: To see what’s on the screen click on the serial monitor button
	Slide 7: Formatting a new line:
	Slide 8: Tabs are a great way to separate text from data
	Slide 9: Uses of Serial.print()
	Slide 10: Sending Characters to the Arduino
	Slide 11: Simple receive character code
	Slide 12: Sending Data to the Arduino
	Slide 13

