The Principles of Operation and Applications of a 555 IC Timer

Figure 1 - Signetics 555 timer [1]

Background

- The 555 timer is an Integrated Circuit (I.C.) containing over 40 discrete components
- It was first manufactured in 1972
- Why study such an old device?
- Designed as a universal timer: can be configured for many purposes
- Current production of over one billion devices annually!

Terms / Abbreviations

Concepts / terms used with the 555 timer

- τ (time constant) $=\mathrm{R} \times \mathrm{C}$
- Duty Cycle (Time on / Total Time)
- Monostable
- Bistable
- Astable

New Terms

Terms / Abbreviations

Monostable - one stable state (usually off) Also called a "One Shot"

Terms / Abbreviations

Bistable - Two stable states (off / on)
Also called a "Flip-Flop"

Terms / Abbreviations

Astable - No stable state

- Also called an oscillator
- Most common application of the 555 timer

Princlples of Operation

- The 555 timer is composed of several subsystems:

Principles of Operation

\square Voltage divider:

Principles of Operation

- Comparators:

Principles of Operation

- External RC Network:

As C charges, the voltage at the threshold / trigger point increases.

Capacitor C charges
through Rx and Ry

$$
\operatorname{tau}=(R x+R y) \times C
$$

Principles of Operation

- Flip Flop / Transistor:

Principles of Operation

Astable Circuit [2]

Applications - Astable

Astable Circuit [2]

Oscillator / Timer Applications

Vehicle Turn Signals [3]

Room light controller [4]

Coffee maker clock/timer [5]

Duty Cycle Applications

Varying the duty cycle controls the average voltage output:

Power drill speed control [7]
Duty Cycle values [6]

Calculations reguired for

 apprlieations:Designing an oscillator with the 555 timer requires:

- Calculating Frequency :

$$
f=\frac{1.44}{(R 1+2 R 2) \times C}
$$

- Calculating Duty Cycle :

$$
D C=\frac{R 1+R 2}{(R 1+2 R 2)}
$$

Calculation Example

Determine the frequency and duty cycle of a 555 circuit

 with the following values:$$
\mathbf{R} 1=10.0 \mathrm{~K} \quad \mathbf{R} 2=5.00 \mathrm{~K} \quad \mathbf{C}=4.70 \mathrm{uF}
$$

In-class exercise Soltritorn:

$$
\mathbf{R} 1=10.0 \mathrm{~K} \quad \mathbf{R} 2=5.00 \mathrm{~K} \quad \mathbf{C}=4.70 \mathrm{uF}
$$

$$
\begin{aligned}
& f=\frac{1.44}{\left(10 \times 10^{3} \Omega+2 \times 5 \times 10^{3} \Omega\right) \times 4.7 \times 10^{-6} F}=15 \\
& D C=\frac{R 1+R 2}{(R 1+2 R 2)}=\frac{10 \mathrm{~K} \Omega+5 \mathrm{~K} \Omega}{(10 \mathrm{~K} \Omega+2 \times 5 \mathrm{~K} \Omega)}=75.0 \%
\end{aligned}
$$

References

- 1: http://static.righto.com/images/555/555_operation.png
- 2: www.electronics-tutorials.ws/waveforms/555_timer.html
- 3: www.aliexpress.com/
- 4: www.teambasedapproach.com/03/
- 5: www.severin.com/
- 6: http://www.lightinthebox.com/
- 7: https://www.dewalt.com

