
Introduction to Arduino Sketches :

Analog I/O

 Understand the difference between analog and
digital values

 Understand how to read analog inputs

 Understand how to scale analog inputs

 Understand how to output analog values

 So far we have been working with digitalor
“discrete” values:

 On / Off

 Low / High

 0V / 5V

 However, many signals in the “real world” are
analog in nature – these are “continuous” signals.

 Examples include:

 Temperature

 Velocity

 Light intensity

 These values change in small increments (as small as
we can measure them) over time.

These are used to read inputs from potentiometers (variable
resistors) or sensors.

 We can also use analog inputs on the Arduino.

 These inputs can read a range of voltages between
0 and 5 Volts.

A0, A1 = Variable
Resistors VR1 & VR2

A2= Light Dependent
Resistor (LDR)

Unlike digital inputs, analog inputs do not need to be configured
in the setup function. They can just be used in the loop:

Example: value = analogRead(0);

This command reads pin A0.

The value read is between 0 and 1023*!

* This is based on a power of 2: 210 = 1024.
 Since zero is a value, this range is from 0 to 1023

We can scale the input value to something more reasonable
using the map function.

 val = map(value, fromLow, fromHigh, toLow, toHigh)

* Note – val in this example is a variable that stores the analog value

So, we could scale the 0 – 1023 values to 1 to 100 as follows:

 newValue = map(value, 0, 1023, 1, 100);

An analog value can be produced on the Digital PWM

These pins have a special symbol (~) next to the pin name on
the board

Pin numbers are 3,5,6 and 9-11

LED2 and LED4 are
mapped to D3 and D5.
Use these for analog
outputs

PWM Stands for Pulse Width Modulation.

PWM uses a constant frequency but changes the duty
cycle (time on / total time).

The average voltage on the pin is equal to the duty cycle x 5 volts.

int analogOutput = 9;

int voltVal = 128; // PWM value ranges from 0 – 255

void setup()

{

 pinMode (~analogOutput, OUTPUT); // set pin 9 as an output.

}

void (loop)

{

 analogWrite (analogOutput, voltVal);

}

 Some important notes:
 The output is inverted – this means a value of 0 = full on, 255 = full of!

 To correct this, we can invert the value by writing ~analogOutput instead.

	Slide 1
	Slide 2: Objectives
	Slide 3: Analog values
	Slide 4: Analog signals
	Slide 5: Analog signals
	Slide 6: Analog inputs
	Slide 7: I/O Assignments: Analog Inputs
	Slide 8: Using analog inputs
	Slide 9: Scaling an analog value
	Slide 10: Analog Outputs
	Slide 11: I/O Assignments: Analog
	Slide 12: What is PWM?
	Slide 13: Configuring analog outputs

