
Digital Inputs, if and while branches / loops

 Understand how digital inputs are configured on the
Arduino

 Understand how to wire digital inputs

 Understand the importance of pulldown / pullup
resistors

 Configuring internal pullups

 Understand math operations and looping structures

 A digital input refers to a single value that can be read
as a zero (low or off) or a one (high or on) from a pin.

 Digital inputs are configured in a similar method to
digital outputs in the setup function:

const int pushButton = 6;

void setup()

{

 pinMode (pushButton, INPUT); // setup pin D6 as an input

}

Once the input has been configured, it can be read in a
program using the digitalRead function:

void loop()

{

 inputVal = digitalRead(startSwitch);

}

int startSwitch = 6; // define pin 6 to be an input called “start”

int inputValue;

void setup()

{

 pinMode (startSwitch, INPUT); // initialize digital pin 6 as an input

}

void loop()

{

 inputValue = digitalRead(startSwitch);

}

int startSwitch = 6; // define Input Switch “start” as pin 6
int LED = 13; // define LED as 13
boolean switchVal; // define a variable as type boolean

void setup()
{
 pinMode (startSwitch, INPUT); // initialize digital pin 6 as an input
 pinMode (LED, OUTPUT); // initialize digital pin 13 as output
}

void loop()
{
 switchVal = digitalRead(startSwitch); // read the switch (0 or 1)
 digitalWrite (LED, switchVal); // copy this value to the LED
}

Notice – since switchVal is type boolean, it is read as either HIGH or LOW

If the resistor is not attached
and the switch is open (not
pressed), what is the voltage
at the input pin???

 A resistor connected between the input pin and
ground is called a “Pulldown” resistor.

 Pulldown resistors are used to establish a base
voltage if the switch is off.

Without any connection, the pin is “floating” and could be read as either
a high or a low value. By connecting the resistor, we establish a current
to ground if the switch is open, in this case a “low.”

 If we don’t want to use a resistor, we can use an
internal pullup.

 This is done when defining the input:

 pinMode (6, INPUT_PULLUP);

 This will connect an internal pull-up resistor to the
input.

 However, in this case, the button will go LOW
when pressed.

The C programming language uses some basic math
symbols, with a couple of exceptions:

+ Addition value = x + y;

- Subtraction value = y – x;

/ Division value = y/x;

* Multiplication value = x * y;

++ Add one to a value value++ (also called increment)

-- Subtract one from value value-- (also called decrement)

The C programming language uses other symbols for
comparing values:

== Equality value == 100; ** Note!! Two equals signs!

!= Inequality value != 100;

< Less than value < 100;

> Greater than value > 100;

<= Less or equal value <= 100;

>= Greater or equal value >= 100;

In order to process a change based on an input condition, we can use the if
and while commands:

 count++; // increment variable count
 if (count > 100) // if this condition is true, run the next line
 digitalWrite (BlueLED, HIGH);
 digitalWrite (BlueLED, LOW); // Otherwise, run this line of code

If there are multiple lines of code that need to be run, they can be placed
within curly braces:

 count++;
 if (count > 100)
 {
 digitalWrite (BlueLED, HIGH);
 delay(1000);
 digitalWrite (BlueLED, LOW);
 }

NOTE: no “;” after if condition!!

IMPORTANT:

The if command will test for the condition – if TRUE, it runs
the code in the braces. If FALSE, it will skip to the next
section of code.

 count++;

 if (count > 100)

 {

 digitalWrite (BlueLED, HIGH);

 delay(1000);

 digitalWrite (BlueLED, LOW);

 }

 digitalWrite (RedLED, HIGH);

if
 n

o
t

if - else
if can be combined with else command to perform some
alternate code if false. If FALSE, it will skip to the code in the
else section of code.

 count++;

 if (count >= 100)

 {

 digitalWrite (BlueLED, HIGH);

 }

 else // count < 100

 {

 digitalWrite (BlueLED, LOW);

 }

The if command performs branching – it will execute
the code one time if true, or skip to the next section
of code if false.

In some cases, we want to have the program wait
until a condition has changed before moving on. To
do this we use the while command:

 while (input == TRUE)
 {
 digitalWrite (BlueLED, HIGH);
 input = digitalRead (pushButton);
 }
 digitalWrite (BlueLED, LOW);

Be careful when using while!

 If the condition is not read in the loop, or never
changes, the program will “hang” at that line of
code.

 The program hasn’t stopped; it is just waiting for
an input.

 Next week we’ll look at another way to do this…

	Slide 1
	Slide 2: Objectives
	Slide 3: Part 1: Digital Inputs
	Slide 4: Reading the switch
	Slide 5: Putting it all together
	Slide 6: Now, let’s combine inputs AND outputs…
	Slide 7: How do we wire switches?
	Slide 8: What’s up with the resistor?
	Slide 9: Another way…
	Slide 10: Wiring a switch
	Slide 11: Part 2: Basic math operations and branching structures
	Slide 12: New topic: Basic math and branching structures
	Slide 13: Branching & Looping Structures
	Slide 14: Branching Statements
	Slide 15: Branching Structures
	Slide 16: Looping Statements: while
	Slide 17: While : CAUTION

