ELTN 115

Lecture 2.1 Electronic Components introduction and Passive devices

> T. Thoen Pasadena City College School of Engineering & Technology

Electronic Components can be broken down into three main groups:

Passive
Active
Electro-Mechanical

Passive components

■ "Passive Devices" – how defined? Cannot provide "gain" or amplification / switching in a circuit "Discrete" (individual) components Typically 2 leaded devices (2 wires / pins) Three general types – Resistors, Capacitors, Inductors

Resistors – common packages

Through Hole Package

SIP – Single inline Package

DIP – Dual inline Package

SMT Resistors

Most current components are packaged as *Surface Mount Devices* (SMD), which are part of Surface Mount Technology (SMT).
 SMT resistors don't use a color code to identify values:

For the resistor shown above, the first two numbers are the "value" and the third number is the multiplier, or # of zeros. So, the value would be 270 Ohms.

Resistors – cont'd

Three common sizes: 0603, 0805, 1206 Example: 0805 08 = .08" length 05 = .05" width

Case Size	Component Len _s th	Component Width
0603	0.063	0.030
0805	0.080	0.050
1206*	0.126	0.063
2010	0.200	0.100
2512	0.250	0.125

Power Resistors

 Note – high wattage resistors are "wire-wound" using strips of metal or wire as the primary resistive material, not carbon. Wattages range from 10 – 100W

These are not very common in PCB design due to their size!

Passives #2 - Capacitors

Capacitors come in a variety of packages:

Electrolytic Polyester Surface Mount

Note – SMT Capacitors <u>typically</u> do NOT have numbers / values, except for polarized types (positive and negative leads)

Capacitors - Internal construction

What is a capacitor made of?

- Layers of conductors and Insulators
- Insulators are called *dielectric*
- The dielectric affects the sensitivity to temperature and other effects. There are LOTS of different types of dielectrics, often plastics are used.

Capacitor values

Some small capacitor values are listed with numbers, not a color code: In this example, the number 104 is equal to 1 x 10⁴ picofarads, which translates to 0.1µF.

 Larger Electrolytic (polarized) capacitors have value printed on the case - This example shows 120µF, 400V

Capacitor Tolerances

- Capacitor tolerances are based on the materials they are manufactured from.
- A single letter is used to define the tolerance band.
- Most common are in the +/-5% to 20% range

Code	Tolerance	Code	Tolerance
А	± 0.05 pF	К	± 10 %
В	± 0.1 pF	L	± 15 %
С	± 0.25 pF	М	± 20 %
D	± 0.5 pF	N	± 30 %
E	± 0.5 %	Ρ	-0 to 100 %
F	±1%	S	-20 to 50 %
G	± 2 %	W	-0 to 200 %
Н	±3%	Х	-20 to 40 %
J	±5%	Z	-20 to 80 %

http://mechatrotutor.blogspot.com/

"Decoding" a capacitor!What data is important for selecting a capacitor?

ValueVoltageTolerance

Value: 120pF Voltage: 8kV Tolerance"K" = 10%

So, based on what we've learned, what are these parameters for this capacitor?

Inductors

Typically a coil of wire wound around a ferrite core.

Packages are usually "radial" or "axial"
 Axial – think "axle"
 Radial – both leads (wires)
 on same end

Values are typically small – micro-Henries or milli-Henries. 1 Henry is VERY large!
Current rating is critical – listed for both DC and AC current, depending on the application.