
State machines with the
Arduino

 Understand the concept of what state
machines are and their purpose

 Understand how to implement a state machine
in Arduino

• In coding, a State Machine, or Finite State Machine is a
program that has the following characteristics:

• There are a “finite” number of states the program can be
in.

• The program can be in only one state at any time.

• Inputs determine the next state the program will go to.
Inputs can be switches, sensors, or timers for example.

 State machines eliminate the possibility of
“jumping” from one state to another out of
sequence or causing “glitches.”

 They are structured in a way that makes code
easier to implement and more robust.

 They are scalable and adaptable; in other words
you can easily add more tasks or change the
sequence without re-writing lots of code.

 They act immediately on inputs without any
delays.

 A common way of visualizing state machines
is using a state diagram. The following example
is for a turnstile with two inputs and one
output:

 State machines are used in systems that require
high reliability and operate in a logical sequence

 Elevators

 Traffic lights

 Factory automation (i.e. assembly lines)

 Let’s start with a simple example where we cycle three
LED’s (green, yellow and red) sequentially

 We start by defining the states with names:

// Define states

#define GREEN 1
#define YELLOW 2
#define RED 3

Note: In this case we use the #define directive rather than a
variable. This basically substitutes the number on the right in the
code for the names when it is compiled. It could also be done
using variables that are defined as constants.

if (STATE == GREEN)
 {
 digitalWrite (greenLED,HIGH);
 digitalWrite (yellowLED,LOW);
 digitalWrite (redLED,LOW);
 while (digitalRead (button) == 1); // Wait for button to be pressed
 debounce(); // short debounce
 STATE = YELLOW; // Advance to next state
}

In this basic example, an if statement is used to turn on a green
LED if STATE = GREEN. Notice that the end of the code will
force the program into the YELLOW state after this state is
completed.

if (STATE == YELLOW)

 {

 digitalWrite (greenLED,LOW);

 digitalWrite (yellowLED,HIGH);

 digitalWrite (redLED,LOW);

 while (digitalRead(button) == 1); // Wait for button to be pressed

 debounce(); // short debounce

 STATE = RED; // Advance to next state

}

The next state turns only the yellow LED on. What will the next
state be?

if (STATE == RED)
 {

 digitalWrite (greenLED,LOW);
 digitalWrite (yellowLED,LOW);
 digitalWrite (redLED,HIGH);
 while (digitalRead(button) == 1); // Wait for button to be pressed
 debounce(); // short debounce
 STATE = GREEN; // Advance to next state
}

In this state the red LED is turned on. The next state will return to
state number 1, which is called GREEN.

• This example may seem like a lot of work to just run LED’s in
sequence (as we have coded before) using a for loop.

• However, it would be very easy to change the sequence, or add
more LED’s.

• Also, we could add other functions inside each state (for example,
look at another switch input to move to another state)

 Counters (often using a variable called “tick”) can be used to cause
delays during states, or automatically move from state to state.

 The main method used here is to implement a variable that
increments quickly, for example every 10 milliseconds.

 This allows a switch or other input to be read frequently without
using delays, so the system can respond quickly to external events.

 The following screen shows an example of how this is implemented.

delayTime = 5; // Set delay to 5, which will create a 5 second delay

void loop()

{

 tick++; // increment tick every 10 milliseconds

 if (tick == delayTime * 100) // if tick is equal to delay time, go to next state

 {

 changeLIGHTS (STATE); // Cycle through states

 tick = 0; // Reset tick

 }

delay(10); // Short delay for cycle time

}

In this case the states are changed in a function called changeLIGHTS()
We will walk through a specific example to see how this works.

Great reference: Look at turnstile example

https://en.wikipedia.org/wiki/Finite-state_machine

https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine

	Slide 1
	Slide 2: Objectives
	Slide 3: State Machines
	Slide 4: Advantages of State Machines
	Slide 5: State machine diagrams
	Slide 6: State machine examples
	Slide 7: State machine coding
	Slide 8: State machine coding
	Slide 9: State machine coding
	Slide 10: State machine coding
	Slide 11: State machine coding
	Slide 12: State machine coding
	Slide 13: Using a counter
	Slide 14: References

