
Implementing Interrupts with the Arduino

 Understand what interrupts are and how they
can be implemented

Think of some repetitive task as a program

For example, driving to school:

There are multiple steps, done in a sequence, with time
constraints…

1. Start the car

2. Move down the driveway

3. Turn at proper intersections

4. Stop at stop signs

5. Find a parking place (hopefully)

However, a police car is following you, and last
time you got pulled over for speeding with just a
warning – this time it will be a ticket!

So, what will you do differently / more often??

 Check rearview

 Check speedometer

 They must be done often

 They must be done very quickly

 Consequences of not following above rules:

 You might not see you’re speeding (not keep track of
your speed)

 You might hit the car in front of you (not enough
time doing main task)

 There are times in a program where some event
can occur quickly, but we can’t miss it.

 For example, a pushbutton used for a
stopwatch…

 If we don’t capture the event at the exact
moment it occurs, it may not work properly

 Do we know when the button will be pressed?

 These are “Asynchronous” events…

 An interrupt can occur at any time

 An interrupt must be VERY short so it doesn’t
cause the main program to be delayed

 Two types of interrupts:

 Hardware (external)

 Triggered by a hardware input pin

 Software (internal)

 Triggered by an internal timer or other event

 Two main parts of an interrupt:

 Interrupt hardware definitions

 Cause / Condition

 Interrupt Service Routine (ISR)

 Short function that runs when interrupt occurs

 Interrupt hardware definitions

 attachInterrupt (0, switchPushed, FALLING);

Arduino built-in
command – done
in setup

Which pin is
used (hardware
interrupt) NOTE:
0 = pin 2
1 = pin 3

Name of ISR
(function that
runs when
interrupt is
activated)

Condition of
hardware
interrupt (falling
edge of pulse)

void loop()
{
 val = analogRead(A0);
 if (val > 100)
 digitalWrite(LED1, HIGH);
 else
 digitalWrite(LED1,LOW);
 }

Interrupt occurs
at this point in
program

Loop runs
forever unless
an interrupt
occurs

void switchPushed()
{
 digitalWrite(LED2,HIGH);
}

Program jumps
out of the loop to
the ISR

When ISR is completed,
program continues at the
point it left off…

int redLED = 13;

volatile int buttonPressed = 0; // use ‘volatile’
 with ISR

void setup()

{

 pinMode(redLED, OUTPUT);

 attachInterrupt (0, switchPushed, FALLING);

}

void loop()
{

 if (buttonPressed == 1)
 {
 digitalWrite (redLED,HIGH); // turn on LED for
 delay(500); // ½ second
 digitalWrite (redLED,LOW);
 buttonPressed = 0;
 }
 else
 digitalWrite(redLED, LOW);
 }

void switchPushed() // ISR

{

 buttonPressed = 1;

}

 http://www.hobbytronics.co.uk/arduino-
timer-interrupts

 http://homediyelectronics.com/projects/ardu
ino/arduinotimerinterruptexample/

http://www.hobbytronics.co.uk/arduino-timer-interrupts
http://www.hobbytronics.co.uk/arduino-timer-interrupts
http://homediyelectronics.com/projects/arduino/arduinotimerinterruptexample/
http://homediyelectronics.com/projects/arduino/arduinotimerinterruptexample/

	Slide 1
	Slide 2: Objectives
	Slide 3: Interrupts – an analogy
	Slide 4: The interrupt
	Slide 5: What is important about these actions?
	Slide 6: What does this have to do with Arduino programming??
	Slide 7: One way to solve this problem is using interrupts
	Slide 8: Interrupts on the Arduino
	Slide 9: Hardware Interrupts on the Arduino
	Slide 10: Interrupts on the Arduino
	Slide 11: What does the interrupt look like?
	Slide 12: Example Program - setup
	Slide 13: Example Program
	Slide 14: Example Program
	Slide 15: Software interrupts

