
Implementing Interrupts with the Arduino

 Understand what interrupts are and how they
can be implemented

Think of some repetitive task as a program

For example, driving to school:

There are multiple steps, done in a sequence, with time
constraints…

1. Start the car

2. Move down the driveway

3. Turn at proper intersections

4. Stop at stop signs

5. Find a parking place (hopefully)

However, a police car is following you, and last
time you got pulled over for speeding with just a
warning – this time it will be a ticket!

So, what will you do differently / more often??

 Check rearview

 Check speedometer

 They must be done often

 They must be done very quickly

 Consequences of not following above rules:

 You might not see you’re speeding (not keep track of
your speed)

 You might hit the car in front of you (not enough
time doing main task)

 There are times in a program where some event
can occur quickly, but we can’t miss it.

 For example, a pushbutton used for a
stopwatch…

 If we don’t capture the event at the exact
moment it occurs, it may not work properly

 Do we know when the button will be pressed?

 These are “Asynchronous” events…

 An interrupt can occur at any time

 An interrupt must be VERY short so it doesn’t
cause the main program to be delayed

 Two types of interrupts:

 Hardware (external)

 Triggered by a hardware input pin

 Software (internal)

 Triggered by an internal timer or other event

 Two main parts of an interrupt:

 Interrupt hardware definitions

 Cause / Condition

 Interrupt Service Routine (ISR)

 Short function that runs when interrupt occurs

 Interrupt hardware definitions

 attachInterrupt (0, switchPushed, FALLING);

Arduino built-in
command – done
in setup

Which pin is
used (hardware
interrupt) NOTE:
0 = pin 2
1 = pin 3

Name of ISR
(function that
runs when
interrupt is
activated)

Condition of
hardware
interrupt (falling
edge of pulse)

void loop()
{
 val = analogRead(A0);
 if (val > 100)
 digitalWrite(LED1, HIGH);
 else
 digitalWrite(LED1,LOW);
 }

Interrupt occurs
at this point in
program

Loop runs
forever unless
an interrupt
occurs

void switchPushed()
{
 digitalWrite(LED2,HIGH);
}

Program jumps
out of the loop to
the ISR

When ISR is completed,
program continues at the
point it left off…

int redLED = 13;

volatile int buttonPressed = 0; // use ‘volatile’
 with ISR

void setup()

{

 pinMode(redLED, OUTPUT);

 attachInterrupt (0, switchPushed, FALLING);

}

void loop()
{

 if (buttonPressed == 1)
 {
 digitalWrite (redLED,HIGH); // turn on LED for
 delay(500); // ½ second
 digitalWrite (redLED,LOW);
 buttonPressed = 0;
 }
 else
 digitalWrite(redLED, LOW);
 }

void switchPushed() // ISR

{

 buttonPressed = 1;

}

 http://www.hobbytronics.co.uk/arduino-
timer-interrupts

 http://homediyelectronics.com/projects/ardu
ino/arduinotimerinterruptexample/

http://www.hobbytronics.co.uk/arduino-timer-interrupts
http://www.hobbytronics.co.uk/arduino-timer-interrupts
http://homediyelectronics.com/projects/arduino/arduinotimerinterruptexample/
http://homediyelectronics.com/projects/arduino/arduinotimerinterruptexample/

	Slide 1
	Slide 2: Objectives
	Slide 3: Interrupts – an analogy
	Slide 4: The interrupt
	Slide 5: What is important about these actions?
	Slide 6: What does this have to do with Arduino programming??
	Slide 7: One way to solve this problem is using interrupts
	Slide 8: Interrupts on the Arduino
	Slide 9: Hardware Interrupts on the Arduino
	Slide 10: Interrupts on the Arduino
	Slide 11: What does the interrupt look like?
	Slide 12: Example Program - setup
	Slide 13: Example Program
	Slide 14: Example Program
	Slide 15: Software interrupts

