
Hardware interfacing with the
Arduino / .h files

Aka – Bells and Whistles

 Learn how to create a header file

 Understand what we can do besides read
switches and light up LEDs.

 Understand how to interface with more
complicated hardware

 Understand what libraries are and how they
are used.

 Expanding I/O

 One way to clean up / simplify our programs is to create

header files to include our I/O definitions

 Note: This is not the same as a commented header!

 The header file is a separate file that is added to the sketch
folder.

 Once the header is created it can be used in other programs.

 The following screen shots show how this can be done…

 To create a header file, we need to first add a

new tab to the existing sketch:

Click on this button,
and select New Tab

 Create a name for the new file:

Type a file name here,
for example:
Stemtera_IO.h

 Next, cut and paste the following lines from

the program into the new file tab (or you can

just type in your own header file):

 Finally, create an #include statement in your

main sketch tab. NOTE: The file name must

EXACTLY match the header file name!

 Once done, click the Check button to make

sure the program still compiles.

 I would highly recommend adding the following lines (or

modify for your own naming preference) to your header

file – that way you can use it in the rest of your programs!

“If you can turn on an LED, you can turn on and off any
electronic device.” *

However, you are limited by the current and voltage levels from
the Arduino.

Typical digital outputs are limited to 5 volts at 30 milliAmps (mA).

To control devices that require more voltage or current we can use
transistors or relays.

*T. Thoen

Transistors can be used to switch higher voltage and
current levels for D.C. circuits:

Basic concept – transistors can use a small current at the
base to switch a large current at the collector.

• For example, some buzzers require higher voltages or
currents.

• We can connect a transistor to an Arduino output pin
to increase the current and allow higher voltages.

• We can use the same method to turn a motor on and off.

• However, we need to add a diode to prevent voltage
damage on the output pin.

• Notice that the grounds MUST be connected!!

 Relays are electro-mechanical switches

 Relays can be used to control higher
voltages or AC current.

 Relays also isolate the Arduino signals
from the higher voltages and currents.

 This isolation provides more safety in
the wiring.

Just like motors, diodes should be used when
connecting relay coils to an Arduino output.

Coil diode

 Make sure to check the coil ratings – if greater
than 5V at 30mA, use a transistor.

 Output ratings are often greater than 120V at 3
Amps!

Coil voltage = 5V

Contact voltage:
125V @ 15 Amps!

• By replacing the motor with a string of LEDs we can control
higher voltage (12V) LED strings.

• Again, Notice that the grounds MUST be connected!!

Analog inputs can be used to read sensors:

 Temperature

 Pressure

 Light

 Sound

 Direction

 Acceleration

 Controller inputs

LM34 – analog temperature I.C.

 Two potentiometers
for X-Y feedback

Since the values are only a fraction (approx. 90
degrees) of the rotation you can use the MAP function
to scale the values.

 Flexing the material
changes the resistance

Used for VR feedback with gloves, etc.

 LCD displays Graphic Displays

RGB arrays

• Often there are libraries available from
Sparkfun and Adafruit

• The libraries are pre-written functions that
allow “easy” interfacing

• The Arduino library also has a number of
libraries pre-defined for interfacing with
devices

• Many libraries are included with the Arduino
program – however it requires them to be
added

• Libraries are added through the Tools –
Manage Libraries option

• For example, Neo-pixels:

 The Arduino has limited I/O

 You can move up to a Mega board

 54 I/O vs. 14!!

 Another way is using shift registers

 74595 Outputs:

 Stepper motors are driven by electronic pulses

 Each pulse moves the motor shaft a fixed rotary
distance (i.e. 1.8 degrees)

 They can also be used with “microsteppers” to move
fractions of a degree for more precision.

 Transistors or IC’s are required to interface between
the Arduino and Stepper to increase the current output

https://www.arduino.cc/en/reference/stepper

	Slide 1: ELTN 117 – UNIT 10
	Slide 2: Objectives
	Slide 3: Header (*.h) files
	Slide 4: Header (*.h) files
	Slide 5: Header (*.h) files
	Slide 6: Header (*.h) files
	Slide 7: Header (*.h) files
	Slide 8: Header (*.h) files
	Slide 9: Header (*.h) files
	Slide 10: Digital outputs – more than LEDs!
	Slide 11: Transistor interfacing
	Slide 12: How do we wire a transistor to control a buzzer?
	Slide 13: How do we wire a transistor to control a motor?
	Slide 14: Using Relays
	Slide 15: Using Relays
	Slide 16: Using Relays
	Slide 17: Relay ratings
	Slide 18: How do we wire a transistor to control an LED string?
	Slide 19: We can also use the analog outputs to control brightness:
	Slide 20: Analog inputs
	Slide 21: Temperature example
	Slide 22: Analog inputs: Joystick
	Slide 23: Analog inputs: Flex sensors
	Slide 24: More complex devices…
	Slide 25: How do I program with these devices??
	Slide 26: Libraries
	Slide 27: Libraries
	Slide 28: Expanding I/O
	Slide 29: Output Shift Registers
	Slide 30: Input shift registers: 74165 or 4021 Shift in
	Slide 31: Creating a keyboard matrix
	Slide 32: Stepper motors
	Slide 33: Example: Stepper motors

