Introduction to Arduino Hardware

Objectives

- Understand the Hardware associated with the Arduino
- Start to become familiar with vocabulary associated with Arduino

Physical Computing

- What makes this class different than other programming classes?
- Physical computing, in the broadest sense, means building interactive physical systems by the use of software and hardware that can sense and respond to the *analog* world.

- Wikipedia

Questions for design

What do you want to interface with?
What do you want to control?
What type of interface do you need?

The Arduino - what is it?

An open-source platform for developing interactive programs that control external hardware, like LED's, switches, or even communicating over the internet.

The Arduino: Why use it?

- Open source the software is free, along with hardware designs
- It is a relatively easy language to learn
- The cost is low
- **•** There are LOTS of online resources
- There are lots of versions for adding more complexity

□ Let's take a look at some of the hardware...

It all starts with a microcontroller

Atmel Atmega 32828 Pin Microcontroller

What makes it different than a microprocessor?

Microprocessor:

- ALU (Arithmetic Logic Unit)
- Clock (timing) circuit
- Local memory (registers)
- A Microcontroller adds Memory and I/O to make a complete "System on a chip"

What is in the '328?

The same "part" - circa 1975

ALTAIR 8080 CPU Board

Arduino - a development board

Terms associated with Arduino / Microcontrollers

 Hardware: Physical components on the Arduino board

 Firmware: Code or programs that are stored in the memory of the microcontroller

Terms associated with Arduino / Microcontrollers

• Memory

- RAM: *Volatile* (temporary) used for short term variables
 FLASH: *Non-volatile* (indefinite, can be modified) Used for constants, text, etc.
- □ **I/O** (Inputs & outputs)
 - **Digital** (discrete, zeroes and ones): Hi / Low voltage values (0 or 5 volts)
 - Analog (continuous): A range of voltage values, typically <u>between</u> 0 and 5 volts.

Arduino Hardware

 Microcontroller – Atmel 328. The "brain" similar to a microprocessor, but includes "peripherals," memory and I/O

 Crystal – "The heart" provides a precise clock to the Arduino - typically 16 MHz

Voltage Regulator

Reduces 9-12 Volts in from external power supply (adapter) to 5V

USB Interface

User interface to program the Arduino / use as a terminal to send / receive user input

Transmit / Receive LED's

Used to indicate communication – should flash when Uploading or sending data to and from programs.

Programming header

ICSP Header – "In-Circuit Serial Programming" for hardware programming / interfacing with dedicated programmers

Headers - digital

Headers – sockets used to connect the Arduino to other hardware for *digital* interface

Headers - Analog

Analog

Power Inputs / Reset

Power / Reset

The STEMtera board

http://learn.stemtera.com/en/begin/

So, how is it programmed?

Compilers convert a high level language (i.e. "C") to the machine code that the microcontroller understands:

C language		Assembly Language		Machine Code	
delay(1000)	;	MAIN_LOOP:	LDA 10	0000:	F7 00 10
		FST_LOOP:	LDB 1000	0003:	F6 10 00
		IN_LOOP:	DBNZ	0007:	D4 00 03
			DBNZ	000A:	D3 00 02

Old school

Intel SDK 8085 Development system

